SPECIFICATIONS

2500: General Specifications

Sample rate
Supply voltage range:
VA requirements: Non Replaceable Fuse: Rating:

IOC power
consumption
consumption:

I/O Module power consumption:
EMC
Emissions:
Immunity:
Vibration:
Safety
Safety:
$110 \mathrm{mSec} /$ Nominal 9 Hz
18.0 to $28.8 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V}$ dc damage may occur
< 80W max. for fully loaded rack
4A time lag

Modbus 1.5W max
Profibus 2W max
Devicenet 2W max
Ethernet (Modbus-TCP) 2W max
See module specification below

EN50081-2: 1994
EN50082-2: 1992
EN60068-2, test FC

EN61010-1: 1993/A2: 1995 Installation cat II, Pollution degree 2 Safety earth and are made to clearly marked earth screen connections: terminals at the bottom of the base

Environmental
Operating Temperature: 0 to $55^{\circ} \mathrm{C}$
Storage Temperature: $\quad-20$ to $70^{\circ} \mathrm{C}$
Relative Humidity: $\quad 5$ to 95% non-condensing

2500B: Base Unit
The base consists of an aluminium extrusion, the internal I/O bus interconnection PCB and mounting supports. The base is designed to be DIN rail mounted, within an enclosure. However, if preferred it can be directly fixed to a bulkhead or mounting plate. Both base and modules can be fixed horizontally or vertically.

Bases are available in several standard sizes to suit the number of modules required in a particular system. The dimensions and weights of the different size bases are detailed in the table below.

Mechanical

Module Capacity	0	2	4	8	10	12	16
Width (mm):	47	87	137	239	289	340	442
Weight Kg (No modules):	0.1	0.25	0.35	0.65	0.7	0.9	1.2
Weight Kg (all modules):	0.25	0.5	1.0	1.9	2.25	2.7	3.6

Mounting:
DIN rail:
Casing:
Ventilation Space:
DIN rail or Bulkhead, can be mounted horizontally or vertically
Use symmetrical DIN rail to EN50022-35 $\times 7.5$ or 35×15
Without additional protection IP20
25 mm free space above and below

Module

I/O Module Sample Rate
2500E
2500E SYSIO
Diagnostic LEDs
Diagnostic LEDs indicate module diagnostic status.
All modules: \quad A green LED at the top indicates the module is powered
2500C controller module: 3 yellow LEDs show configuration or standby status, and communications activity
A red LED indicates failure of the internal self diagnostic routines
2500M Analog module: Have red LEDs for each channel to indicate channel failure
2500M Digital module: Have yellow LEDs for each channel to indicate the channel state

Live Plug-in
The live plug-in feature means that I/O modules can be replaced under power without any disturbance to the field wiring or other inputs and outputs, reducing downtime and minimizing disturbance to other signal conditioning strategies.

Termination Assemblies

The I/O modules are mounted on the base using terminal assemblies. Terminal assemblies provide the interface between the input and output signals and the I/O modules. Terminal assemblies and I/O modules are keyed to inhibit insertion of the incorrect module; this prevents damage to both equipment and plant.

Test Disconnect / Fuse Units
Terminal assemblies have an optional fuse or a link (isolator or disconnect). This provides a series of connections between the customer terminals and the I/O module, permitting pluggable fuse or link units to be placed in series with the signal. Fuse and link units are not interchangeable. Terminal assemblies that do not have disconnect, have a dummy cover in the same position, providing space for a label to indicate the circuit or cable tag name.

Communications

iTools is used to set up the type, range linearization and scaling of analog inputs, the PID control type and parameters, and all other functions and features within the 2500.

Soft Wiring

Available on all 2500 's; soft wiring enables interconnection between inputs, Alarms, Maths and Logic 'Toolkit Blocks', PID, and Outputs.

Saving and Documenting your Configuration

Once the configuration has been completed the application can be saved as a 'clone' file for repeat application. Clone files can be loaded, copied, saved and edited both on and off-line.

2500E: Control module for a base unit

 The Input Output Controller (IOC) is the Central Processing Unit of the 2500 DIN rail controller. Each 2500 base has an IOC module mounted in the extreme left-hand position. The control module communicates with the I/O modules via the internal I/O bus. Module interconnection is via the Base Unit PCB. This PCB also provides the internal power required by the I/O modules.Control Blocks
Control Loops:
Control modes:
Control outputs:

Cooling algorithms:
Tuning:
Number of PID sets:
Auto/Manual control:

Up to 8 control blocks
On/Off, single PID, Cascaded PID, Ratio Control or Override Control
Analog, Time Proportioned or Motorized Valve control with or without feedback potentiometer
Linear, Water, Fan, Oil
One-shot Auto tune or Manual
Three
Bumpless transfer or forced manual O / P available

PID and User Alarms
All Analog inputs and outputs share a common, comprehensive alarm capability in addition to the I/O alarms.

Number of user alarms: 4 per PID block plus 4 additional user alarms Alarm types:

Alarm modes: Latching or non-latching, Blocking, Energized or de-energized in alarm

Distributed Aquisition

The modularity of the 2500 makes it easier to create I/O blocks with just the correct mix of Inputs and Outputs, enabling you to distribute the acquisition equipment geographically saving the cost of expensive multi-core or compensation cables. Up to sixteen 2500 base units may be daisy chained to provide complex distributed multi-loop control or acquisition applications. Those are easily linked to an operator interface unit, SCADA package or supervisory PLC. They can also share the communications bus with other external devices such as discrete controllers, indicators, chart recorders, or drives.

Intelligent Alarm Monitor
Alarm Outputs (contact trips) may be triggered, based on sensed or calculated values. Calculated values can be derived from a comprehensive library of maths and Boolean functions. Alarms can be triggered upon violation of high or low threshold, deviation from a constant or sensed input, and from calculated values. Rate of change alarms are also available.

Toolkit Block
'Toolkit blocks' provide the mathematical or logical expressions required in creating an application. The functions are wired together using 'drag and drop' techniques simplifying complex applications. The Toolkit block variables are parameterized using pull down lists or by direct data entry.
$\left.\begin{array}{ll}\text { User variables: } & \begin{array}{l}16 \text { real values per base } \\ \text { Analog function blocks: } \\ 32 \text { function blocks per base; Add, Subtract, Multiply, } \\ \text { Divide, Absolute difference, Maximum, Minimum, Hot } \\ \text { swap, Sample and hold, Power, Square root, Log, Ln, }\end{array} \\ & \begin{array}{l}\text { Exponential, Select Logic }\end{array} \\ \text { Digital function blocks: } \\ 32 \text { function blocks per base: AND, OR, XOR, Latch, } \\ \text { Equal, Not equal, Greater than, Less than, greater than } \\ \text { or equal to, less than or equal to }\end{array}\right\}$

Timing functions:

2500 Signal Conditioning

The 2500 signal conditioning "solution provider" for multiple signal inputs offers the answer to complex signal conditioning challenges. The different base sizes and I/O structure enables users to match I/O modules to suit the precise needs of individual applications. Used as a signal-conditioning unit the 2500 can be configured to solve complex signal conditioning problems. It enables easy link access to analog and digital inputs and outputs while still offering high speed industrial standard serial communication, to suit your data acquisition requirements.

- Custom linearization • First Order Filter • Signal conditioning
- Combinational Logic • Ramp function • Mathematical functions
- High/Low signal select

Humidity Function Block

A special Humidity function block calculates the relative humidity or dew point (Process Value) using the wet and dry bulb measurement technique. Pressure compensation can be measured via a transmitter and soft wired to the block from an input or can be set as a fixed parameter.

Zirconia Function Block

This feature is used to measure carbon potential, furnace dew point or oxygen concentration.

- Temperature Control
- Carbon Potential Control
- Sooting Alarm
- Automatic Probe Cleaning
- Endothermic Gas Correction

Supported probes: Bosch Carbon,
AACC, Drayton, Accucarb, SSI,

MacDhui, Oxygen, Log Oxygen,
Bosch, Dewpoint.
Communications
The IOC module optionally supports Modbus RTU, DeviceNet, Profibus or Modbus TCP communications.
Modbus RTU:
Modbus RTU:

Modbus TCP/IP

Profibus DP: High speed RS485. Up to $12 \mathrm{Mb} /$ s Connectors 9 pin D
3-wire RS232, RJ11 (Normally used for configuration) Jumper selectable 2 or 4 -wire RS485 (Field comms/ configuration) Connectors $2 \times$ RJ45 connector or $2 \times$ RJ45
CAN - 500Kb "Open" connector
10 BASE-T, RJ45

2500M-A: Two Channel Analog Input
This analog input module is used to monitor analog signals from a wide range of plant sensors. The mA and TC inputs each require the appropriate terminal unit. The second channel of the AI2 has a special high impedance range for use with zirconia probe inputs.

No of channels:
Input types:
mV range:
mA range:
Volts range:
RTD support:
Ohms range:
Hi Ohms range:
Pot range:
Resolution:
Linearity:
Input filtering:
Input accuracy:
System isolation:
Channel isolation:
Series mode rejection:
Common mode rejection
Power consumption:
TC Input specification
Linearization types:
CJC system:
Initial CJC accuracy:
CJC rejection:

2
TC, RTD, Volts, mA, mV,
Potentiometer, Pyrometer, Zirconia probe,
-150 mV to +150 mV at input impedance $>100 \mathrm{M} \Omega$
-25 mA to +25 mA with 5Ω burden in the terminal unit
-10.2 V to +10.2 V at input impedance $303 \mathrm{k} \Omega$
Support for 2,3 and 4 wire resistance thermometer devices
0 to $640 \Omega 2$, 3 or 4 -wire lead compensation
0 to $5 \mathrm{k} \Omega 2,3$ or 4 -wire lead compensation
5% to 95% 'rotation' of 100Ω to $5 \mathrm{k} \Omega$ pot
Better than 0.001% of range
Better than 0.003% of range
OFF to 999.9 seconds
Electrical input factory calibrated to better than 0.1% of reading
300 V RMS or dc (double insulation)
300 V RMS or dc (basic insulation) between
thermocouple channels
$60 \mathrm{~dB}(50-60 \mathrm{~Hz})$
$120 \mathrm{~dB}(50-5 \mathrm{kHz})$
2W maximum

J, K, L, R, B, N, T, S, C, PL2, PT100, Linear, SqRoot, plus custom
Measured by RTD fitted on terminal unit $\pm 0.5^{\circ} \mathrm{C}$ typical ($\pm 1^{\circ} \mathrm{C}$ maximum) Better than $30: 1$ over $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: User calibration options can improve performance, limited only by noise and non-linearity.

$2500 \mathrm{M}-\mathrm{C}$: Three Channel Analog Input
Provides three isolated current input channels specifically designed to meet the requirements of modern two wire transmitters. Each channel has its own isolated 24 V supply for transmitter excitation. Each channel's 24 V dc supply is protected against short circuit and utilizes a sophisticated trip and try system in which the module senses over current and cuts the power. After a period the circuit checks for continued circuit malfunction. The module can be optionally fitted with disconnects to allow isolation of an individual input and allow work on the loop to continue safely.

No of channels:
Input range:
Resolution:
Linearity:
Initial accuracy:
Input filtering:
Burden resistance:
Channel PSU:
System isolation:
Channel isolation:
Power consumption:

3
-28 mA to +28 mA
Better than 0.5 uA (16 bits with 1.6 sec filter time) Better than 10uA
Factory calibrated to better than $\pm 0.1 \%$ of reading OFF to 999.9 seconds
60Ω nominal, 50 mA max current
$20-25 \mathrm{~V} \mathrm{dc}$, current limited 30 mA nominal, self-resetting
300 V RMS or dc (double insulation)
300 V RMS or dc (basic insulation). No common ground 4W maximum

Notes:

1. User calibration options can improve performance, limited only by noise and non-linearity.
2. Total burden can be increased to 250Ω or HART by removing a link track on the terminal unit.

AI3 - ORDER CODE Module 2500M-C000	Three channel - isolated 4-20mA analog input with Isolated $24 V$ Tx PSU
Terminal Unit Terminal unit with dummy cover fitted 2500T-DU00 Terminal unit with disconnect	

Al2 - ORDER CODE Module	
2500M-A000	Two Channel - isolated universal input
Terminal Unit	
2500T-AT00 Terminal unit for TC with CJC 2500T-AD00 Terminal unit for Mv, V, PT100, Hiz inputs 2500T-AD20 Terminal unit for 5 ohm shunt fitted for mA	

2500M-D: Four Channel Analog Input
This analog input module is used to monitor analog signals from a wide range of plant sensors. The mA and TC inputs each require the appropriate Terminal Unit.
$\begin{array}{ll}\text { No of channels: } & 4 \\ \text { Input types: } & \text { TC }\end{array}$
TC, mV, mA, Pyrometer mV range: $-150-+150 \mathrm{mV}$ at input impedance $>100 \mathrm{M} \Omega$
mA range: $-25-+25 \mathrm{~mA}$ with 5Ω burden in the terminal unit
Resolution:
Input filtering:
Initial input accuracy:

System Isolation:
Channel isolation:
Series mode rejection:
Common mode rejectio
Power consumption:
Better than 0.001% of range
OFF to 999.9 seconds
Electrical Input Factory Calibrated to better than 0.1\% of reading.
mA range with 5Ω burden in the terminal unit, better than 0.2% of reading.
300 V RS or dc (double insulation)
300 V RMS or dc (basic insulation);
separating Ch1 and Ch2 from Ch3 and Ch4
$60 \mathrm{~dB}(50-60 \mathrm{~Hz}, 1 \mathrm{~mA}$ rms $)$

TC Input specification
Linearization types:
CJC system:
Initial CJC accuracy:
CJC rejection:
$120 \mathrm{~dB}(50-5 \mathrm{kHz}, 50 \mathrm{Vms})$
2 W maximum

J, K, L, R, B, N, T, S, C, PL2, linear, SqRoot, plus custom
Measured by RTD fitted on terminal unit
$\pm 0.5^{\circ} \mathrm{C}$ typical ($\pm 1^{\circ} \mathrm{C}$ maximum)
Better than $30: 1$ over $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Notes:

1. User calibration options can improve performance, limited only by noise and non-linearity.
2. Wiring care and sensor choice should be used to prevent ground loops when using non-isolated TCs.

AI4 - ORDER CODE

Module

2500M-D000 Four channel - T/C, mV, mA input
Terminal Unit
2500T-FT00
2500T-FM00
2500T-FV00
Terminal unit for 4 channel TC with CJC
Terminal unit for 4 channel mV
Terminal unit for 4 channel mA

2500M-E: Two Channel Analog Output
This analog output module provides two isolated analog output channels. Each output can be independently configured for current or voltage mode. The module can be optionally fitted with disconnects to allow isolation of an individual output and allow work on the individual loop to continue safely.

No of channels:
Current output:
Voltage output:

Resolution:
System isolation:
Channel isolation:
Power consumption:

2
-0.1 to $20.5 \mathrm{~mA} ; 10 \mathrm{~V}$ dc max.
Compliance with total burden less than 500Ω
-0.1 V to 10.1 V dc;
20 mA max. compliance with total load greater than 500Ω
-0.3 to 10.3 V dc ;
8 mA max. compliance with total load greater than 1500Ω
Better than 1 part in 10,000 (0.5 mV (15 bit) typical) 300 V RMS or dc (double insulation)
300 V RMS or dc (basic insulation. No common ground) 2.2W maximum

AO2 - ORDER CODE	
Module	
2500M-E000	Two channel isolated mA, volts
Terminal Unit	
2500T-NU00	Terminal unit
2500T-NU30	Terminal unit with disconnect

2500M-L/-M: Eight Channel Logic/Contact Input
This eight channel digital input module accepts eight logic inputs and is available in two factory option formats for voltage or contact-closure input.

No of channels:
Input functions:
System isolation:
Channel isolation:
8

Power consumption Logic:
Contact:
On/Off pulse and de-bounce inputs with input invert 300 V RMS or dc (double insulation) 50 V RMS or dc (basic insulation) between pairs 2W max

'Contact' Variant

Contact closure:
ON state:
OFF state:
Wetting current:
Input resistance threshold 100Ω ($<1 \mathrm{~K} \Omega$ typical) Input resistance threshold $10 \mathrm{~K} \Omega$ ($>7 \mathrm{~K} \Omega$ typical) 4 mA typical

'Logic' Variant

Logic inputs: ON state:
OFF state:
ON transition:
Input voltage threshold $>10.8 \mathrm{~V}$ dc, 30 V max. Input voltage threshold $<5.0 \mathrm{~V}$ dc non-overlapping 2.5 mA approx @ 10.5 V ; 8.0 mA max. @ 30.0 V

DI8 - ORDER CODE

Module

2500M-L000	Eight channel-Logic input Eight channel-Logic input
Terminal Unit	
2500T-MU00	Terminal unit with dummy cover fitted
2500T-MU30	Terminal unit with disconnects

2500M-G: Four Channel Digital Input
This digital input module accepts four logic inputs, and can be wired either for voltage input (either polarity) or for contact closure.

No of channels: Input functions: System isolation: Channel isolation:
Power consumption:
4
On/Off, pulse and de-bounce
300 V RS or dc (double insulation)
Channels share a common connection
0.45 W maximum
'Contact' Variant
External supply:
Contact closure:
ON state:
OFF state:
Wetting current
Wetting voltage:
$18-30 \mathrm{~V}$ dc wetting power required
Input resistance threshold 100Ω ($<1 \mathrm{~K} \Omega$ typical) Input resistance threshold $10 \mathrm{~K} \Omega$ ($>7 \mathrm{~K} \Omega$ typical) $>8 \mathrm{~mA}$
$>9 \mathrm{~V}, 12 \mathrm{~V}$ typical measured open-circuit
'Logic' Variant
Logic inputs:
ON state:
OFF state:
Input impedance:

Input voltage threshold $>10.8 \mathrm{~V}$ dc, 30 V max Input voltage threshold $<5.0 \mathrm{~V}$ dc non- overlapping $4 \mathrm{~K} \Omega$ approx. (> 3 mA drive required for ' ON ')

DI4 - ORDER CODE

Module

2500M-GE00
Four channel - input

Terminal Unit
2500T-JU00
Terminal unit with dummy cover fitted
2500T-JU30

2500M-K: Six Channel AC Voltage Input
The six channel digital input module accepts AC voltage inputs and is available in two factory options optimized for 115 V ac or 230 V ac ranges.

No of channels: nput functions: Frequency: Transient immunity: System isolation:
Channel isolation:
Power consumption:

6
On/Off or de-bounce
$47 \mathrm{~Hz}-63 \mathrm{~Hz}$
EN50082
300 V RMS or dc (double insulation) 300 V RMS or dc (basic insulation) 0.5 W maximum

115V ac' Variant

Active On state:
Inactive OFF state:
Main input current:
Maximum input current: 8 mA
$>95 \mathrm{~V}$ ac $\mathrm{rms}, 150 \mathrm{~V}$ ac rms maximum $<35 \mathrm{~V}$ ac rms

V-I curve for 115 V ac operation

230 V ac' Variant
 Active ON state:

$>180 \mathrm{~V}$ ac rms,
264 V ac rms maximum
Inactive OFF state:
Min input current:
Maximum input current: 9 mA
V-I curve for 230 V AC Operation

V-I curve for 230 V ac operation

NADVERTENT USE OF THE WRONG RANGE

115 V type on 230 V ac No damage will result. Power dissipation will be higher than desirable for continued use on all 6 channels simultaneously.
THIS IS NOT A RECOMMENDED MODE OF OPERATION
D16-ORDER CODE
Module
Module (Six channel high voltage 230 volt ac logic

2500M-JE and HE: Four Channel Logic Output
This digital output module provides four logic outputs and is available in two factory option formats for standard or high output.

No. of channels: System isolation: Channel isolation: Current assumption: Output functions:

'Logic' Variant

Voltage supply: Output current: Output voltage:
'24' Variant
External supply:
Output current:
Output voltage:

4
300 V RMS or dc (double insulation)
Channels share a common connection 100 mA max
TPO and VP in module
$18<\mathrm{Vs}<30 \mathrm{~V}$ dc
$>8 \mathrm{~mA}$ high drive per channel (Current limited) At least Voltage supply (Vs) -3V switch drop
$12<$ Vs $<30 V$ dc
100 mA maximum high drive per channel (Current \& Temperature limted)
At least Voltage supply (Vs) -3V switch drop

DO4 - ORDER CODE

Module

2500M-JE00
2500M-HEOO
Terminal Unit
2500T-RU00
2500T-RU30

Four channel digital logic output 10 mA max Four channel digital 24d switched output

Terminal unit with dummy cover fitted Terminal unit with disconnects

2500M-F: Four Channel Relay Output

This digital output module provides four relay outputs. The relay contacts are all fitted with removable snubber circuits to reduce contact arcing and prolong contact life.

No of channels:
Max current rating:
Min ratings:
Fuse (option):
System isolation:
Channel isolation: Contact life:

De-rating:

Power consumption:

4 (3 normally open +1 changeover)
2 A at up to 240 V ac; 0.5 A at 200 V dc , increasing to 2 A at 50 V dc (resistive)
AgCdO contacts offer best operating life switching more than 100 mA 12 V
$3.15 \mathrm{~A}, 20 \mathrm{~mm}$ ceramic, time lag (T), in terminal unit 300 V RMS or dc (double insulation)
300 V RMS or dc (basic insulation)
>10 million operations @ 250 V ac, 1A rms
$>600,000$ operations @ 250 V ac, 2A rms
The above ratings summarize the performance with resistive loads. With complex loads further derating may be required
1.1 W maximum

Relay De-rating

AC Voltage

As the AC load becomes more "difficult" a more significant derating factor is required. The graph opposite shows the derating to be applied in terms of contact life, assuming the load requirement is predefined.

F1: Worst case
F2: Typical

DC voltage

DC operation is also limited for difficult loads, particularly where there is significant inductance. Here the working current must be limited as shown where the load time constant (L/R, in ms) is the significant factor.

Contact life $=$ resistive contact life \times reduction factor

RLY4 - ORDER CODE Module	
2500M-F000	Four channel isolated relay output
Terminal Unit 2500T-T000 Terminal unit 2500T-T040 Terminal unit with four 3.15A fuses	

2500 - COMPOSITE ORDER CODE

	Basic Product
2500	Eight Loop Controller \& Data Acquisition Unit
1	Basic Size
A	2 module positions
B	4 module positions
C	8 module positions
E	10 module positions
F	12 module positions
D	16 module positions
2	Earthing System
0	Two earth clamps fitted
1	Earthing clamp for a $2 \mathrm{I} / \mathrm{O}$ module base
3	Earthing clamp for a $41 / \mathrm{O}$ module base
4	Earthing clamp for a $81 / \mathrm{O}$ module base
6	Earthing clamp for a $10 \mathrm{I} / \mathrm{O}$ module base
7	Earthing clamp for a $12 \mathrm{I} / \mathrm{O}$ module base
5	Earthing clamp for a $16 \mathrm{l} / \mathrm{O}$ module base
3	Function
1	Remote I/O acquisition
3	Remote I/O acquisition (55ms)*
2	Toolkit block + acquisition functions
4	Four PID blocks + acquisition
6	Eight PID blocks + acquisition
7	Eight PID blocks + toolkit \& acquisition
* 3 only available with field 4 Profibus Comms or Profibus DPV1 Comms	
4	Communications Protocol
A	No extension memory fitted
D	DeviceNet Comms
C	Profibus Comms
B	Profibus DPV1 Comms
E	Modbus TCP/Ethernet
5	Communications Connector Type
1	RJ45 connector for Modbus or Profibus
2	9 pin D connector for Profibus
3	Standard DeviceNet screw connector
4	Ethernet communications
6	Application
0	No application loaded
1*	Pre-configured application loaded

7-22	Module and Terminations
B	2 ch - isol universal analog I/P with CJC for T/C
C	2 ch - isol universal analog I/P for PT100, Hiz inputs
D	2 ch - isol universal analog I/P - 5 shunt fitted for mA inputs
E	3 ch - isol 4-20mA analog I/P with 24 V Tx PSU
F	3 ch - isol 4-20mA analog I/P with 24V Tx PSU with disconnects
G	4 ch - non isol T/C, with CJC
H	4 ch - non isol mV I/P
J	4 ch - non isol mA I/P
K	2 ch - isol analog O/P mA, volts
L	2 ch - isol analog O/P mA, volts with disconnects
M	4 ch - digital I/P
N	4 ch - digital I/P with disconnects
P	$6 \mathrm{ch}-230 \mathrm{volt}$ ac logic $1 / \mathrm{P}$
Q	$6 \mathrm{ch}-115$ volt ac logic I/P
R	8 ch - non isol digital I/P (logic I/P only)
S	8 ch - non isol digital I/P (contact I/P only)
T	4 ch. digital O/P logic O/P 10mA max
U	4 ch . digital O/P logic O/P 10 mA max with disconnects
v	4 ch . digital O/P 24 V dc switched O/P
w	4 ch . digital O/P 24 V dc switched O/P with disconnects
X	4 ch - isol relay O/P rated 2A ac
Y	4 ch - isol relay O/P rated 2 A ac, with 4 off 3.15 A fuses
A	Blank terminal unit
0	No terminal unit or blank fitted
23	Earthing System
N/A	Not Used
24	Configuration Tools
0	CD with manuals
1	CD with manuals, iTools \& 2500 configuration lead
2	Shipped without CD
25	Configuration Tools
N/A	Not Used

Invensys Operations Management • 5601 Granite Parkway III, \#1000, Plano, TX 75024 • Tel: (469) 365-6400 • Fax: (469) 365-6401 • iom.invensys.com
Invensys, the Invensys logo, ArchestrA, Avantis, Eurotherm, Foxboro, IMServ, InFusion, SimSci-Esscor, Skelta, Triconex, and Wonderware are trademarks of Invensys plc, its subsidiaries or affiliates. All other brands and product names may be the trademarks or service marks of their representative owners.
© 2012 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcasting, or by any information storage and retrieval system, without permission in writing from Invensys Systems, Inc.
Rev. 03/12 PN FX-0168

